Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Acta Physiol (Oxf) ; 240(5): e14139, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509816

RESUMO

AIM: Endurance exercise training is known to increase mitochondrial respiration in skeletal muscle. However, the molecular mechanisms behind this are not fully understood. Myoglobin (Mb) is a member of the globin family, which is highly expressed in skeletal and cardiac muscles. We recently found that Mb localizes inside mitochondria in skeletal muscle and interacts with cytochrome c oxidase subunit IV (COXIV), a subunit of mitochondrial complex IV, which regulates respiration by augmenting complex IV activity. In the present study, we investigated the effect of endurance training on Mb-COXIV interaction within mitochondria in rat skeletal muscle. METHODS: Eight-week-old male Wistar rats were subjected to 6-week treadmill running training. Forty-eight hours after the last training session, the plantaris muscle was removed under anesthesia and used for biochemical analysis. RESULTS: The endurance training increased mitochondrial content in the skeletal muscle. It also augmented complex IV-dependent oxygen consumption and complex IV activity in isolated mitochondria from skeletal muscle. Furthermore, endurance training increased Mb expression at the whole muscle level. Importantly, mitochondrial Mb content and Mb-COXIV binding were increased by endurance training. CONCLUSION: These findings suggest that an increase in mitochondrial Mb and the concomitant enhancement of Mb interaction with COXIV may contribute to the endurance training-induced upregulation of mitochondrial respiration by augmenting complex IV activity.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Músculo Esquelético , Mioglobina , Condicionamento Físico Animal , Ratos Wistar , Animais , Masculino , Músculo Esquelético/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ratos , Condicionamento Físico Animal/fisiologia , Mioglobina/metabolismo , Treino Aeróbico , Mitocôndrias Musculares/metabolismo , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia
2.
Data Brief ; 53: 110091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328284

RESUMO

Chronic heat stress induces mitochondrial adaptation in skeletal muscle. However, the effect of chronic heat stress on the respiratory function per mitochondria in skeletal muscle has not been well studied. Here, the present study reports on the effect of 3-weeks heat stress on muscle mitochondrial respiration using male C57BL/6JJ mice at age 21 weeks. Mice were randomly assigned to either the control group (n = 6) or passive heat group (n = 6). After 3-weeks of heat stress, the right triceps surae was removed and used for biochemical analysis. Protein expression was assessed by immunoblotting. Mitochondrial respiratory function was measured by Oxygraph-2k. The study also shows the impact of the heat stress on daily feeding, body weight, muscle weight, and protein expression of heat shock proteins (heat-response marker).

3.
Front Aging Neurosci ; 15: 1162765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273649

RESUMO

Objective: It is a big problem that many older adults are physically inactive. Well-known benefits of physical exercise include a decrease in the risk of cognitive decline and physical frailty. Therefore, this study aims to examine whether our proposed exercise program can prevent cognitive decline and improve physical function in the elderly. Methods: This study will include nondemented older adults (n = 103) without regular exercise habits. The trial will include a physical exercise training program (once a week) and nutritional lectures (once a month) over 5 months and follow-up for ≥1 year. The primary endpoint is the program's efficacy in preventing cognitive decline, as assessed by changes in the memory performance index of the mild cognitive impairment (MCI) screen; the secondary endpoints are the incidence of MCI and dementia, physical testing, and frailty proportion. In the exploratory phase of the study, we will elucidate the underlying diseases causing MCI in community-dwelling older adults by neuroimaging. Discussion: This double-arm trial that aims to assess the impact of physical exercise on nondemented older adults' cognitive and physical function. Furthermore, our newly developed exercise program will be easy for older adults to undertake.Clinical Trial Registration: https://clinicaltrials.gov/, identifier [jRCT 1040220140].

4.
Physiol Rep ; 11(7): e15632, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020386

RESUMO

Recently, we found that myoglobin (Mb) localizes in both the cytosol and mitochondrial intermembrane space in rodent skeletal muscle. Most proteins of the intermembrane space pass through the outer mitochondrial membrane via the translocase of the outer membrane (TOM) complex. However, whether the TOM complex imports Mb remains unknown. The purpose of this study was to investigate the involvement of the TOM complex in Mb import into the mitochondria. A proteinase K protection assay of mitochondria from C2C12 myotubes confirmed that Mb integrated into the mitochondria. An immunoprecipitation assay verified the interaction of Mb and TOM complex receptors (Tom20, Tom70) in isolated mitochondria. The assay showed a clear interaction of Mb with Tom20 and Tom70. A knockdown experiment using siRNA for TOM complex receptors (Tom20, Tom70) and TOM complex channel (Tom40) did not alter the amount of Mb expression in the mitochondrial fraction. These results suggested that Mb does not necessarily require the TOM complex for mitochondrial import of Mb. Although the physiological role of Mb interactions with TOM complex receptors remains unclear, further studies are needed to clarify how Mb enters the mitochondria independently of the TOM complex.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Proteínas de Membrana Transportadoras/genética , Mioglobina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transporte Proteico , Proteínas Mitocondriais/metabolismo
5.
Physiol Rep ; 9(5): e14769, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33650803

RESUMO

Mitochondria play a principal role in metabolism, and mitochondrial respiration is an important process for producing adenosine triphosphate. Recently, we showed the possibility that the muscle-specific protein myoglobin (Mb) interacts with mitochondrial complex IV to augment the respiration capacity in skeletal muscles. However, the precise mechanism for the Mb-mediated upregulation remains under debate. The aim of this study was to ascertain whether Mb is truly integrated into the mitochondria of skeletal muscle and to investigate the submitochondrial localization. Isolated mitochondria from rat gastrocnemius muscle were subjected to different proteinase K (PK) concentrations to digest proteins interacting with the outer membrane. Western blotting analysis revealed that the PK digested translocase of outer mitochondrial membrane 20 (Tom20), and the immunoreactivity of Tom20 decreased with the amount of PK used. However, the immunoreactivity of Mb with PK treatment was better preserved, indicating that Mb is integrated into the mitochondria of skeletal muscle. The mitochondrial protease protection assay experiments suggested that Mb localizes within the mitochondria in the inner membrane from the intermembrane space side. These results strongly suggest that Mb inside muscle mitochondria could be implicated in the regulation of mitochondrial respiration via complex IV.


Assuntos
Respiração Celular/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Mitocôndrias/metabolismo , Ratos Wistar
6.
Br J Nutr ; 126(11): 1642-1650, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33551001

RESUMO

BACKGROUND: Previous research has suggested that curcumin potentially induces mitochondrial biogenesis in skeletal muscle via increasing cyclic AMP (cAMP) levels. However, the regulatory mechanisms for this phenomenon remain unknown. The purpose of the present study was to clarify the mechanism by which curcumin activates cAMP-related signalling pathways that upregulate mitochondrial biogenesis and respiration in skeletal muscle. METHODS: The effect of curcumin treatment (i.p., 100 mg/kg-BW/d for 28 d) on mitochondrial biogenesis was determined in rats. The effects of curcumin and exercise (swimming for 2 h/d for 3 d) on the cAMP signalling pathway were determined in the absence and presence of phosphodiesterase (PDE) or protein kinase A (PKA) inhibitors. Mitochondrial respiration, citrate synthase (CS) activity, cAMP content and protein expression of cAMP/PKA signalling molecules were analysed. RESULTS: Curcumin administration increased cytochrome c oxidase subunit (COX-IV) protein expression, and CS and complex I activity, consistent with the induction of mitochondrial biogenesis by curcumin. Mitochondrial respiration was not altered by curcumin treatment. Curcumin and PDE inhibition tended to increase cAMP levels with or without exercise. In addition, exercise increased the phosphorylation of phosphodiesterase 4A (PDE4A), whereas curcumin treatment strongly inhibited PDE4A phosphorylation regardless of exercise. Furthermore, curcumin promoted AMP-activated protein kinase (AMPK) phosphorylation and PPAR gamma coactivator (PGC-1α) deacetylation. Inhibition of PKA abolished the phosphorylation of AMPK. CONCLUSION: The present results suggest that curcumin increases cAMP levels via inhibition of PDE4A phosphorylation, which induces mitochondrial biogenesis through a cAMP/PKA/AMPK signalling pathway. Our data also suggest the possibility that curcumin utilises a regulatory mechanism for mitochondrial biogenesis that is distinct from the exercise-induced mechanism in skeletal muscle.


Assuntos
Curcumina , Biogênese de Organelas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Curcumina/farmacologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Fatores de Transcrição/metabolismo
7.
J Oleo Sci ; 66(7): 723-733, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626143

RESUMO

Conjugated linoleic acids (CLA) intake has been reported to reduce body fat mass or increase lean body mass and to improve exercise outcome by modulating testosterone in humans. These reports have studied mostly overweight subjects; few were athletes. Therefore, in this study, the effect of CLA intake on endurance performance and anti-fatigue in student athletes was investigated. A double-blind, crossover study was conducted with 10 male student athletes. Each subject was administered with either CLA (net 0.9 g/day) or a placebo for 14 days. They were subjected to an exercise tolerance test (steady loading) using a cycle ergometer on days 0 and 14. Peak VO2 was determined for each subject using a graded loading test. The steady loading test was performed with a pedaling exercise load of 50% peak VO2 for 40 min and then with a load of 70% peak VO2 until exhaustion. Blood sampling and measurement of critical flicker frequency (CFF) were performed before and after exercise. The rate of perceived exertion (RPE) was measured serially during exercise. In the results, amount of body weight variation significantly increased and amount of body fat percentage variation tended to decrease by CLA intake, it might have an effect by increase in muscle mass. In addition, amount of exercise time variation significantly increased, amount of variation of CFF before and after exercise tended to increase, that of RPE during exercise tended to decrease, and that of creatine phosphokinase before and after exercise tended to decrease in the CLA group. These results suggested that CLA intake for 14 days might have an effect on endurance performance and anti-fatigue in student athletes.


Assuntos
Atletas , Tolerância ao Exercício/efeitos dos fármacos , Exercício Físico/fisiologia , Fadiga/prevenção & controle , Ácidos Linoleicos Conjugados/administração & dosagem , Ácidos Linoleicos Conjugados/farmacologia , Resistência Física/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adolescente , Adulto , Peso Corporal , Creatina Quinase/sangue , Estudos Cross-Over , Método Duplo-Cego , Teste de Esforço , Humanos , Masculino , Esforço Físico/efeitos dos fármacos , Testosterona/metabolismo , Adulto Jovem
8.
Physiol Rep ; 5(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28108649

RESUMO

Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O2) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆PmbO2) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O2 gas: 95.0%O2, 71.3%O2, and 47.5%O2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (SmbO2), and the PmbO2 was then calculated based on the SmbO2 and the O2 dissociation curve of the Mb. The SmbO2 and PmbO2 at rest decreased with the decrease in O2 supply, and the muscle contraction caused a further decrease in SmbO2 and PmbO2 under all O2 conditions. The net increase in mV˙O2 from the muscle contraction (∆mV˙O2) gradually decreased as the ∆PmbO2 decreased during muscle contraction. The results of this study suggest that ΔPmbO2 is a key determinant of the ΔmV˙O2.


Assuntos
Hipóxia/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Animais , Hipóxia Celular , Glucose , Membro Posterior , Masculino , Mioglobina/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Wistar , Trometamina
9.
J Physiol ; 594(2): 483-95, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26584944

RESUMO

KEY POINTS: Mitochondrial respiration is regulated by multiple elaborate mechanisms. It has been shown that muscle specific O2 binding protein, Myoglobin (Mb), is localized in mitochondria and interacts with respiratory chain complex IV, suggesting that Mb could be a factor that regulates mitochondrial respiration. Here, we demonstrate that muscle mitochondrial respiration is improved by Mb overexpression via up-regulation of complex IV activity in cultured myoblasts; in contrast, suppression of Mb expression induces a decrease in complex IV activity and mitochondrial respiration compared with the overexpression model. The present data are the first to show the biological significance of mitochondrial Mb as a potential modulator of mitochondrial respiratory capacity. ABSTRACT: Mitochondria are important organelles for metabolism, and their respiratory capacity is a primary factor in the regulation of energy expenditure. Deficiencies of cytochrome c oxidase complex IV, which reduces O2 in mitochondria, are linked to several diseases, such as mitochondrial myopathy. Moreover, mitochondrial respiration in skeletal muscle tissue tends to be susceptible to complex IV activity. Recently, we showed that the muscle-specific protein myoglobin (Mb) interacts with complex IV. The precise roles of mitochondrial Mb remain unclear. Here, we demonstrate that Mb facilitates mitochondrial respiratory capacity in skeletal muscles. Although mitochondrial DNA copy numbers were not altered in Mb-overexpressing myotubes, O2 consumption was greater in these myotubes than that in mock cells (Mock vs. Mb-Flag::GFP: state 4, 1.00 ± 0.09 vs. 1.77 ± 0.34; state 3, 1.00 ± 0.29; Mock: 1.60 ± 0.53; complex 2-3-4: 1.00 ± 0.30 vs. 1.50 ± 0.44; complex IV: 1.00 ± 0.14 vs. 1.87 ± 0.27). This improvement in respiratory capacity could be because of the activation of enzymatic activity of respiratory complexes. Moreover, mitochondrial respiration was up-regulated in myoblasts transiently overexpressing Mb; complex IV activity was solely activated in Mb-overexpressing myoblasts, and complex IV activity was decreased in the myoblasts in which Mb expression was suppressed by Mb-siRNA transfection (Mb vector transfected vs. Mb vector, control siRNA transfected vs. Mb vector, Mb siRNA transfected: 0.15 vs. 0.15 vs. 0.06). Therefore, Mb enhances the enzymatic activity of complex IV to ameliorate mitochondrial respiratory capacity, and could play a pivotal role in skeletal muscle metabolism.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Musculares/metabolismo , Mioglobina/metabolismo , Animais , Linhagem Celular , Camundongos , Mioblastos/metabolismo , Mioglobina/genética
10.
Metabolism ; 64(10): 1334-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26278015

RESUMO

BACKGROUND: In response to physiologic stressors, skeletal muscle has the potential to elicit wide variety of adaptive responses, such as biogenesis of mitochondria and clearance of damaged mitochondria to promote healthy muscle. The polyphenol curcumin, derived from the rhizome Curcuma longa L., is a natural antioxidant that exhibits various pharmacological activities and therapeutic properties. However, the effect of curcumin on the regulation of mitochondrial biogenesis in skeletal muscle remains unknown. The present study aimed to examine the effects of combination of endurance training (eTR) and curcumin treatment on the expression of AMPK, SIRT1, PGC-1α, and OXPHOS subunits, mitochondrial DNA copy number, and CS activity in rat skeletal muscle. Furthermore, the present study also examined the effect of exercise and curcumin treatment on the levels of cAMP and downstream targets of PKA including phosphorylated CREB and LKB-1. METHODS: Ten-week-old male Wistar rats were randomly divided into non-eTR and eTR groups. Low doses (50 mg/kg-BW/day) or high doses (100 mg/kg-BW/day) of curcumin dissolved in dimethyl sulfoxide (DMSO) were injected intraperitoneally in all animals for 28 days to investigate the effect of curcumin alone and the combined effect of curcumin with eTR. Western blotting (WB) and immunoprecipitation (IP) were performed to detect the presence of proteins. RESULTS: Our results demonstrated that combination of curcumin treatment and eTR increased the expression of COX-IV, OXPHOS subunits, mitochondrial DNA copy number and CS activity in the gastrocnemius (Gas) and soleus (Sol) muscles. In addition, this combination increased AMPK phosphorylation, NAD(+)/NADH ratio, SIRT1 expression, and PGC-1α deacetylation. Furthermore, curcumin treatment as well as exercise also increased levels of cAMP and downstream target of PKA including phosphorylation CREB and LKB-1 which are involved in the regulation of mitochondrial biogenesis. CONCLUSION: Taken together, these results suggest that the combination of curcumin treatment and eTR has the potential to accelerate mitochondrial biogenesis in skeletal muscle by increasing cAMP levels.


Assuntos
Curcumina/farmacologia , AMP Cíclico/metabolismo , Mitocôndrias Musculares/fisiologia , Músculo Esquelético , Biogênese de Organelas , Condicionamento Físico Animal/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Resistência Física/genética , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos
11.
Sci Rep ; 5: 9403, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25801957

RESUMO

At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Oxigênio/metabolismo , Resistência Física/fisiologia , Animais , Cinética , Masculino , Condicionamento Físico Animal , Ratos , Ratos Wistar , Espectroscopia de Luz Próxima ao Infravermelho , Natação
12.
J Oleo Sci ; 64(4): 415-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25766930

RESUMO

Skeletal muscles can adapt to dietary interventions that affect energy metabolism. Dietary intake of medium-chain fatty acids (MCFAs) enhances mitochondrial oxidation of fatty acids (FAO) in type IIa skeletal muscle fibers. However, the effect of MCFAs diet on mitochondrial or cytoplasmic FAO-related protein expression levels in different types of muscle fibers remains unclear. This study aims to examine the effects of a high-fat diet, containing MCFAs, on mitochondrial enzyme activities and heart-type fatty acid-binding protein (H-FABP) levels in different types of skeletal muscle fibers. Five-week-old male Wistar rats were assigned to one of the following three dietary conditions: standard chow (SC, 12% of calories from fat), high-fat MCFA, or high-fat long-chain fatty acids (LCFAs) diet (60% of calories from fat for both). The animals were provided food and water ad libitum for 4 weeks, following which citrate synthase (CS) activity and H-FABP concentration were analyzed. The epididymal fat pads (EFP) were significantly smaller in the MCFA group than in the LCFA group (p < 0.05). MCFA-fed group displayed an increase in CS activity compared with that observed in SC-fed controls in all types of skeletal muscle fibers (triceps, surface portion of gastrocnemius (gasS), deep portion of gastrocnemius (gasD), and soleus; p < 0.05,). H-FABP concentration was significantly higher in the LCFA group than in both the SC-fed and MCFA-fed groups (triceps, gasS, gasD, and soleus; p < 0.05,). However, no significant difference was observed in the H-FABP concentrations between the SC-fed and MCFA-fed groups. The results of this study showed that the MCFA diet can increase the expression of the mitochondrial enzyme CS, but not that of H-FABP, in both fast- and slow-twitch muscle fibers, suggesting that H-FABP expression is dependent on the chain length of fatty acids in the cytoplasm of skeletal muscles cells.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Citrato (si)-Sintase/metabolismo , Proteína 3 Ligante de Ácido Graxo , Ácidos Graxos/administração & dosagem , Expressão Gênica , Masculino , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/metabolismo , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
13.
Biochim Biophys Acta ; 1837(10): 1699-706, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24882639

RESUMO

Carnitine is well recognized as a key regulator of long-chain fatty acyl group translocation into the mitochondria. In addition, carnitine, as acetylcarnitine, acts as an acceptor of excess acetyl-CoA, a potent inhibitor of pyruvate dehydrogenase. Here, we provide a new methodology for accurate quantification of acetylcarnitine content and determination of its localization in skeletal muscles. We used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to visualize acetylcarnitine distribution in rat skeletal muscles. MALDI-IMS and immunohistochemistry of serial cross-sections showed that acetylcarnitine was enriched in the slow-type muscle fibers. The concentration of ATP was lower in muscle regions with abundant acetylcarnitine, suggesting a relationship between acetylcarnitine and metabolic activity. Using our novel method, we detected an increase in acetylcarnitine content after muscle contraction. Importantly, this increase was not detected using traditional biochemical assays of homogenized muscles. We also demonstrated that acetylation of carnitine during muscle contraction was concomitant with glycogen depletion. Our methodology would be useful for the quantification of acetylcarnitine and its contraction-induced kinetics in skeletal muscles.


Assuntos
Acetilcarnitina/metabolismo , Carnitina/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Músculo Esquelético/fisiologia , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
15.
J Appl Physiol (1985) ; 114(4): 490-7, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23195625

RESUMO

The mechanisms underlying subcellular oxygen transport mediated by myoglobin (Mb) remain unclear. Recent evidence suggests that, in the myocardium, transverse diffusion of Mb is too slow to effectively supply oxygen to meet the immediate mitochondrial oxygen demands at the onset of muscle contractions. The cell may accommodate the demand by maintaining the distribution of Mb to ensure a sufficient O(2) supply in the immediate vicinity of the mitochondria. The present study has verified the co-localization of Mb with mitochondria by using biochemical histological and electron microscopy analyses. Immunohistochemical and electron microscopy analysis indicates a co-localization of Mb with mitochondria. Western blotting confirms the presence of Mb colocalizes with the mitochondrial fraction and appears more prominently in slow-twitch oxidative than in fast-twitch glycolytic muscle. In particular, Mb interacts with cytochrome c oxidase-subunit IV. These results suggest that a direct Mb-mediated O2 delivery to the mitochondria, which may play a potentially significant role for respiration.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Animais , Western Blotting , Respiração Celular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glicólise , Imuno-Histoquímica , Imunoprecipitação , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias Musculares/ultraestrutura , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta , Músculo Esquelético/ultraestrutura , Consumo de Oxigênio , Ratos , Ratos Wistar
16.
Biochem Biophys Res Commun ; 418(4): 774-9, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22310714

RESUMO

Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL(uptake)) of l-[(3)H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL(uptake) of [(14)C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL(uptake) of l-[(3)H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p<0.05). The CL(uptake) of [(14)C]IAP was much higher than that of l-[(3)H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p<0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-induced translocation of its specific transporter OCTN2 to the plasma membrane.


Assuntos
Carnitina/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Transporte Biológico , Masculino , Transporte Proteico , Ratos , Ratos Wistar , Membro 5 da Família 22 de Carreadores de Soluto
17.
Adv Exp Med Biol ; 662: 323-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204810

RESUMO

In order to obtain evidence that Mb releases O(2) during muscle contraction, we have set up a buffer-perfused hindlimb rat model and applied NIRS to detect the dynamics of tissue deoxygenation during contraction. The NIRS signal was monitored on hindlimb muscle during twitch contractions at 1 Hz, evoked via electrostimulator at different submaximal levels. The hindlimb perfusion was carried out by perfusion of Krebs Bicarbonate buffer. The NIRS still detected a strong signal even under Hb-free contractions. The deoxygenation signal (Delta[deoxy]) was progressively increased at onset of the contraction and reached the plateau under both blood- and buffer-perfused conditions. However, the amplitude of Delta[deoxy] during steady state continued to significantly increase as tension increased. The tension-matched comparison of the Delta[deoxy] level under buffer-perfused and blood perfused conditions indicate that Mb can contribute approximately 50% to the NIRS signal. These results clarify the Mb contribution to the NIRS signal and show a falling intracellular PO(2) as workload increases.


Assuntos
Membro Posterior/fisiologia , Contração Muscular/fisiologia , Músculos/fisiologia , Oxigênio/sangue , Perfusão/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Soluções Tampão , Hemoglobinas/metabolismo , Técnicas In Vitro , Masculino , Mioglobina/metabolismo , Ratos , Ratos Wistar
18.
Acta Physiol (Oxf) ; 200(1): 57-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20219053

RESUMO

AIM: Carnitine plays an essential role in fat oxidation in skeletal muscles; therefore carnitine influx could be crucial for muscle metabolism. OCTN2, a sodium-dependent solute carrier, is assumed to transport carnitine into various organs. However, OCTN2 protein expression and the functional importance of carnitine transport for muscle metabolism have not been studied. We tested the hypothesis that OCTN2 is expressed at higher levels in oxidative muscles than in other muscles, and that the carnitine uptake capacity of skeletal muscles depends on the amount of OCTN2. METHODS: Rat hindlimb muscles (soleus, plantaris, and the surface and deep portions of gastrocnemius) were used for Western blotting to detect OCTN2. Tissue carnitine uptake was examined by an integration plot analysis using l-[(3)H]carnitine as a tracer. Tissue carnitine content was determined by enzymatic cycling methods. The percentage of type I fibres was determined by histochemical analysis. RESULTS: OCTN2 was detected in all skeletal muscles although the amount was lower than that in the kidney. OCTN2 expression was significantly higher in soleus than in the other skeletal muscles. The amount of OCTN2 was positively correlated with the percentage of type I fibres in hindlimb muscles. The integration plot analysis revealed a positive correlation between the uptake clearance of l-[(3)H]carnitine and the amount of OCTN2 in skeletal muscles. However, the carnitine content in soleus was lower than that in other skeletal muscles. CONCLUSION: OCTN2 is functionally expressed in skeletal muscles and is involved in the import of carnitine for fatty acid oxidation, especially in highly oxidative muscles.


Assuntos
Carnitina/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Transporte Biológico , Western Blotting , Ácidos Graxos/metabolismo , Membro Posterior , Masculino , Fibras Musculares de Contração Lenta/metabolismo , Oxirredução , Ratos , Ratos Wistar , Membro 5 da Família 22 de Carreadores de Soluto , Trítio
19.
Exp Physiol ; 95(5): 630-40, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20080866

RESUMO

Although the O(2) gradient regulates O(2) flux from the capillary into the myocyte to meet the energy demands of contracting muscle, intracellular O(2) dynamics during muscle contraction remain unclear. Our hindlimb perfusion model allows the determination of intracellular myoglobin (Mb) saturation ( ) and intracellular oxygen tension of myoglobin ( ) in contracting muscle using near infrared spectroscopy (NIRS). The hindlimb of male Wistar rats was perfused from the abdominal aorta with a well-oxygenated haemoglobin-free Krebs-Henseleit buffer. The deoxygenated Mb ([deoxy-Mb]) signal was monitored by NIRS. Based on the value of [deoxy-Mb], and were calculated, and the time course was evaluated by an exponential function model. Both and started to decrease immediately after the onset of contraction. The steady-state values of and progressively decreased with relative work intensity or muscle oxygen consumption. At the maximal twitch rate, and were 49% and 2.4 mmHg, respectively. Moreover, the rate of release of O(2) from Mb at the onset of contraction increased with muscle oxygen consumption. These results suggest that at the onset of muscle contraction, Mb supplies O(2) during the steep decline in , which expands the O(2) gradient to increase the O(2) flux to meet the increased energy demands.


Assuntos
Contração Muscular/fisiologia , Mioglobina/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Técnicas In Vitro , Cinética , Masculino , Músculo Esquelético/irrigação sanguínea , Mioglobina/biossíntese , Pressão Parcial , Perfusão , Ratos
20.
J Physiol Sci ; 58(5): 349-55, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18838051

RESUMO

This study examined the effects of a different number of eccentric contractions (ECs) on histological characteristics, surface electromyogram (EMG) parameters (integral EMG, iEMG; muscle fiber conduction velocity, MFCV; and action potential waveform), and isometric peak torque using the rat EC model. Male Wistar rats (n = 40) were anesthetized, and ECs were initiated in the tibialis anterior muscle via electrical stimulation while the muscle was being stretched by electromotor. The rats were grouped according to the number of ECs (EC1, EC5, EC10, EC20, EC30, EC40, and EC100). Three days after the ECs, surface EMG signals and isometric peak torque were measured during evoked twitch contractions via electrical stimulation of the peroneal nerve. The muscle damage was evaluated from hematoxylin-eosin (HE) stained cross sections as a relative number of damaged fibers to intact fibers. Intense histological muscle damage (approximately 50% to 70% of the fiber), loss of isometric peak torque, disturbance of action potential waveform, and depression of iEMG (approximately -60% to -70%) were observed at EC20, EC30, EC40, and EC100. On the other hand, the MFCV did not change in any EC group. Although muscle damage and pathological surface EMG signals were not found at EC10, isometric peak torque was reduced significantly. In conclusion, the extent of histological muscle damage is not proportionally related to the number of ECs. Muscle damage was reflected by iEMG and action potential waveforms, but not by MFCV, which remained unaffected even though approximately 50% to 70% of the fiber demonstrated injury.


Assuntos
Contração Isométrica/fisiologia , Músculo Esquelético , Ferimentos e Lesões/patologia , Ferimentos e Lesões/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Eletromiografia , Masculino , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Nervo Fibular/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA